HMGB1 recruits hepatic stellate cells and liver endothelial cells to sites of ethanol-induced parenchymal cell injury.
نویسندگان
چکیده
Hepatic stellate cells (HSC) and liver endothelial cells (LEC) migrate to sites of injury and perpetuate alcohol-induced liver injury. High-mobility group box 1 (HMGB1) is a protein released from the nucleus of injured cells that has been implicated as a proinflammatory mediator. We hypothesized that HMGB1 may be released from ethanol-stimulated liver parenchymal cells and contribute to HSC and LEC recruitment. Ethanol stimulation of rat hepatocytes and HepG2 cells resulted in translocation of HMGB1 from the nucleus as assessed by Western blot. HMGB1 protein levels were increased in the supernatant of ethanol-treated hepatocytes compared with vehicle-treated cells. Migration of both HSC and LEC was increased in response to conditioned medium for ethanol-stimulated hepatocytes (CMEtOH) compared with vehicle-stimulated hepatocytes (CMVEH) (P < 0.05). However, the effect of CMEtOH on migration was almost entirely reversed by treatment with HMGB1-neutralizing antibody or when HepG2 cells were pretransfected with HMGB1-siRNA compared with control siRNA-transfected HepG2 cells (P < 0.05). Recombinant HMGB1 (100 ng/ml) also stimulated migration of HSC and LEC compared with vehicle stimulation (P < 0.05 for both HSC and LEC). HMGB1 stimulation of HSC increased the phosphorylation of Src and Erk and HMGB1-induced HSC migration was blocked by the Src inhibitor PP2 and the Erk inhibitor U0126. Hepatocytes release HMGB1 in response to ethanol with subsequent recruitment of HSC and LEC. This pathway has implications for HSC and LEC recruitment to sites of ethanol-induced liver injury.
منابع مشابه
How to Face Chronic Liver Disease: The Sinusoidal Perspective
Liver microcirculation plays an essential role in the progression and aggravation of chronic liver disease. Hepatic sinusoid environment, mainly composed by hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, intimately cooperate to maintain global liver function and specific phenotype of each cell type. However, continuous liver injury significantly dere...
متن کاملProtective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling
Objective(s): Oxidative stress has been established as a key cause of alcohol-induced hepatotoxicity. Licochalcone B, an extract of licorice root, has shown antioxidative properties. This study was to investigate the effects and mechanisms of licochalcone B in ethanol-induced hepatic injury in an in vitro study. Materials and Methods: An in vitro model of Ethanol-induced cytotoxicity in BRL cel...
متن کاملAn In Vitro Human Liver Model by iPSC-Derived Parenchymal and Non-parenchymal Cells
During liver development, hepatoblasts and liver non-parenchymal cells (NPCs) such as liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs) constitute the liver bud where they proliferate and differentiate. Accordingly, we reasoned that liver NPCs would support the maturation of hepatocytes derived from human induced pluripotent stem cells (hiPSCs), which usually exhibit ...
متن کاملRelease of osmolytes induced by phagocytosis and hormones in rat liver.
Betaine, taurine, and inositol participate as osmolytes in liver cell volume homeostasis and interfere with cell function. In this study we investigated whether osmolytes are also released from the intact liver independent of osmolarity changes. In the perfused rat liver, phagocytosis of carbon particles led to a four- to fivefold stimulation of taurine efflux into the effluent perfusate above ...
متن کاملMolecular pathogenesis of hepatic fibrosis and current therapeutic approaches.
The pathogenesis of hepatic fibrosis involves significant deposition of fibrilar collagen and other extracellular matrix proteins. It is a rather dynamic process of wound healing in response to a variety of persistent liver injury caused by factors such as ethanol intake, viral infection, drugs, toxins, cholestasis, and metabolic disorders. Liver fibrosis distorts the hepatic architecture, decr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 305 11 شماره
صفحات -
تاریخ انتشار 2013